

Hydrogen demand, production flexibility and storage

Dr Michael Wagner, Special Advisor Management Consulting Division

AN INTRODUCTION TO AFRY

Our strategic framework

WHO WE ARE

OUR VISION Making Future

OUR MISSION
We accelerate the transition towards a sustainable society

OUR VALUES
Brave
Devoted
Team players

OUR PEOPLE
Inclusive and diverse
teams with deep sector
knowledge

OUR AMBITION

A leader in sustainable engineering, design and advisory with a global reach

Our hydrogen expertise

KEY FIGURES

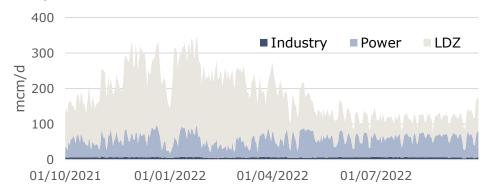
- 1 Over 100 projects delivered globally in over 30 countries since start of 2021
- 2 Technical/engineering on project capacity over 10GW electrolyser capacity
- 3 Expertise covers the entire value chain from production to end-use
- 4 Expertise in Ammonia, e-methanol and Sustainable Aviation Fuels
- 5 Over 50 experts located globally involved in projects

INDUSTRY

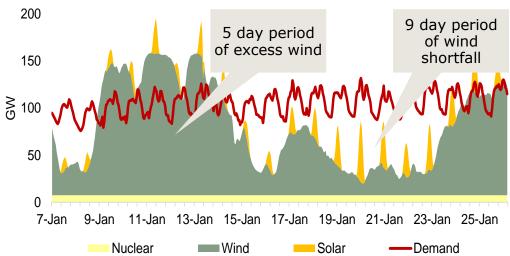
TRANSPORT

POWER

HEAT


ENERGY SECURITY

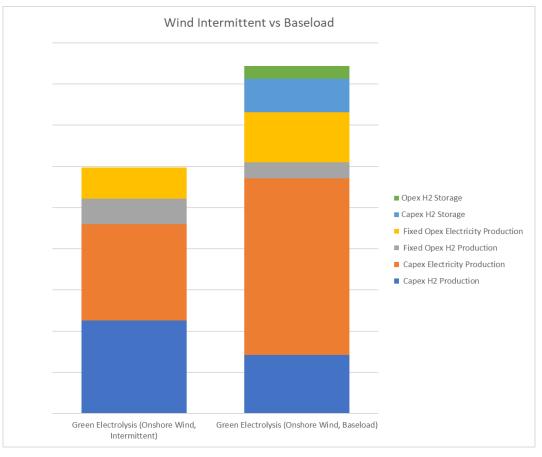
GB energy systems provide consumers with high levels of energy security


ENERGY SECURITY AND RESILIENCE

- Energy security and resilience is key to consumers, we have to maintain this trust as we decarbonise
- The flexibility of gas supplies and gas storage has been key to meeting variability of demand in both the gas and power sectors
- As the use of gas decreases and the level of renewables increases the challenges of supplying demand will increase
- Energy demand has strong seasonal patterns and heating demand is highly temperature sensitive
 - Creates challenges for delivering heating load, whether we are using electricity or hydrogen for decarbonisation
- Solar and wind generation have diurnal and seasonal output patterns, but also suffer from intermittency due to variable weather patterns.
 - Increasing issues for balancing the electricity system but also creates intermittency for green hydrogen production
- Hydrogen can be stored in large quantities over long durations, so can play a key role in providing security across the whole energy system

2021/22 GB GAS DEMAND

2050 POWER GENERATION AND CONSUMPTION GAP

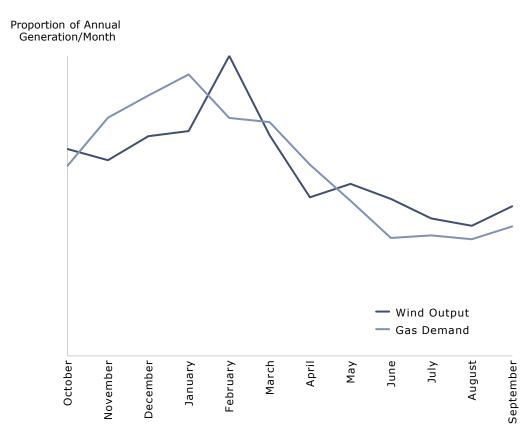

HYDROGEN SYSTEMS

Early hydrogen systems will have specific issues providing energy security

ENERGY SECURITY IN EARLY HYDROGEN SYSTEMS

- Early Hydrogen systems may be single sites with individual production and supply or industrial clusters
 - Many early systems will be supplying industrial demand which is likely to have a relatively flat demand profile
 - Consumers will expect high levels of energy security
 - Hydrogen production will need to be designed with levels of redundancy and storage, increasing cost
 - Industrial processes may maintain the ability to switch back to gas, demand side flexibility will have significant value
- Green hydrogen will have particular challenges providing baseload hydrogen from intermittent renewable energy
 - Delivering baseload hydrogen will require optimising renewable and electrolyser capacity, and investing in compression and tank storage
 - The additional cost of meeting demand profiles could add over 40% to the cost of green hydrogen
 - The Low Carbon Hydrogen Standard provides some flexibility to use grid electricity, but periods of low renewables will be when power costs and grid carbon intensity are high

THE COSTS OF SUPPLYING BASELOAD GREEN HYDROGEN

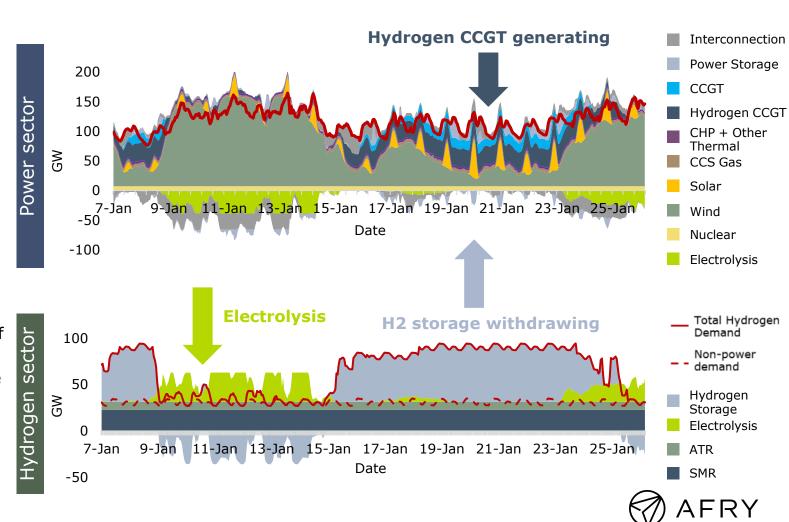

SEASONAL PROFILES

Decarbonising heat will require the future energy system to deliver meet a seasonal demand profile

MEETING FUTURE HEAT DEMAND

- Heat demand in Great Britain is currenly predominantly met by gas, with flexibility in gas supplies and gas storage delivering the demand profile
- The decarbonisation pathway for heat is still uncertain, but is likely to require some mix of hydrogen and electrification
- Blue hydrogen could potentially use the existing flexibility in gas supply (requiring flexibility in blue hydrogen production) or would need hydrogen storage
- Electrification or green hydrogen would both be higly dependent on offshore wind generation which is likely to provide over 60% of electricity generation in 2050
 - Wind generation output is also **highly seasonal** with much stronger winds over winter months than summer
 - The seasonal profile of wind and heat are relatively well correlated
 - This correlation will **reduce** the need for **seasonal storage** capacity...but the system will still need significant long duration storage!

GB WIND OUTPUT & GAS DEMAND PROFILES (2019-21)



HYDROGEN STORAGE AND ELECTROLYSERS

The energy system will need significant long term storage - hydrogen can provide this flexibility

HYDROGEN PROVIDES FLEXIBILITY TO THE SYSTEM

- Hydrogen is likely to be the one of the most optimal technologies for managing longer term energy imbalances
 - Geological hydrogen storage is cost effective for storing large volumes of energy over long time periods
 - Meeting hydrogen demand profiles and for balancing the electricity system
 - Electrolysers utilise 'excess' renewable energy during periods of high wind, with hydrogen fuelling CCGTs during periods of low wind
- Balancing the **electricity system** in 2050
 - 33GW of electrolysers producing 124TWh of hydrogen, mainly using excess renewables
 - 73TWh of hydrogen withdrawn from storage per year
 - Total hydrogen storage capacity of 15TWh, with injection/withdrawal capability of 2TWh/day

Conclusions

- Consumers have recieved **high levels** of **energy security** from our current energy sytems
 - They will expect similar levels of security from hydrogen supply
- Inital hydrogen systems single sites or industrial clusters
 - Providing security of hydrogen supply will require increased investment in production redundancy and storage
 - Providing baseload green hydrogen can add significantly to hydrogen costs
 - Demand side flexibility will have significant value
- Heat demand fluctuates with temperature and has significant seasonality
 - Wind generation also has significant seasonality which is relatively well correlated to current gas demand
 - This will **reduce** requirements for **seasonal storage** if we electrify heat or use green hydrogen
- The energy system will still need significant long duration storage
 - **Hydrogen storage** is cost effective for storing large volumes of energy over long time periods
 - We expect requirements for over **15TWh** of **hydrogen storage** capacity in 2050
 - The storage will need to be capable of **cycling** to balance **intermittent weather** patterns

Hydrogen and Power-to-X

DR MICHAEL WAGNER
Special Advisor - Hydrogen
Management Consulting Division

michael.wagner@afry.com +44 7384 215988

